Как сделать прогноз по продажам


Как сделать прогноз по продажам

Как сделать прогноз по продажам

Как сделать прогноз по продажам


Лучшие новости сайта

Библиотека управления

Александр Коренев ()

Введение

В этой статье мы на примере рассмотрим один из статистических методов прогнозирования продаж. Мы будем прогнозировать прибыль, а точнее размер месячной прибыли. Совершенно аналогично можно делать прогнозы и других показателей продаж: выручка, объем продаж в натуральных единицах, количество сделок, количество новых клиентов и т.д.

Описанный в статье метод прост (относительно, конечно) и не привязан к специализированным программам. В принципе, для составления прогноза достаточно было бы бумаги, карандаша, калькулятора и линейки. Однако, это очень трудоемкий способ, поскольку в процессе возникает много рутинных вычислений. Поэтому мы будем использовать Microsoft Excel (версии 2000).

Помимо простоты у метода есть еще один важный плюс: для прогноза требуется небольшая статистика. Сделать прогноз на 2-3 месяца вперед можно, если есть статистика хотя бы за 13-14 месяцев. Ну а большая статистика дает возможность и прогноз делать на больший период.

Сбор и подготовка статистики продаж

Прогнозирование начинается, конечно, со сбора статистики продаж. Здесь нужно обращать внимание на то, чтобы все сделки были более-менее одного «масштаба», и чтобы количество сделок в месяц было достаточно большое.

Например, розничный магазин. Даже в небольшом магазине в месяц могут делаться тысячи и даже десятки тысяч покупок. Сумма каждой покупки, по сравнению с месячной выручкой, весьма мала — 0,0..01% от выручки. Это хорошая ситуация для прогнозирования.

Если прогноз делается для компании, работающей на корпоративном рынке, то нужно следить, чтобы количество сделок в месяц было хотя бы не менее 100, иначе для прогнозирования нужно применять другие методы. Также, если в статистике продаж встречаются крупные сделки, с суммой, например, около 10% от месячной выручки, то такие сделки надо исключать из статистики и рассматривать отдельно (опять же другими методами). Если крупные сделки не исключить, то они создадут в динамике «выбросы», которые могут сильно ухудшить точность прогноза.

Далее мы будем рассматривать пример со статистикой из таблицы 1. На рисунке 1 данные таблицы представлены в виде графика.

По этим данным мы будем составлять прогноз на 12 месяцев вперед.

Таблица 1. Помесячная статистика прибыли, тыс. руб. Для удобства все месяцы (периоды) пронумерованы подряд, с 1-го по 19-тый. Период № Периода Прибыль Период № Периода Прибыль 2004-7 1 839 2005-5 11 3069 2004-8 2 1714 2005-6 12 2220 2004-9 3 2318 2005-7 13 1653 2004-10 4 2629 2005-8 14 3115 2004-11 5 2823 2005-9 15 3961 2004-12 6 3320 2005-10 16 4514 2005-1 7 3316 2005-11 17 4644 2005-2 8 3479 2005-12 18 5066 2005-3 9 3388 2006-1 19 4934 2005-4 10 3263 - - -


Рис. 1. График помесячной прибыли, данные из таблицы .

Существуют две основные модели временного ряда: аддитивная и мультипликативная. Формула аддитивной модели: Yt = Tt + St + et Формула мультипликативной модели: Yt = Tt x St + et Обозначения: t - время (месяц или другой период детализации); Y - значение величины; Т — тренд; S — сезонные изменения; е - шум. Разница между моделями хорошо видна на рисунке , где приведены два ряда, с одинаковыми трендами, один ряд — по мультипликативной модели, другой — по аддитивной.

Примечание. Могут встречаться такие показатели продаж, у которых сезонные колебания практически отсутствуют.


Рис. 2. Примеры рядов: слева — по аддитивной модели; справа — по мультипликативной.

В нашем примере мы будем использовать мультипликативную модель.

Для каких-либо других данных, возможно лучше подошла бы аддитивная модель. Узнать на практике, какая модель подходит лучше, можно либо интуитивно, либо методом проб и ошибок.

Выделение тренда

В формулах моделей рядов динамики (Yt = Tt + St + et и Yt = TtSt + et) фигурирует тренд Tt, такой тренд мы будем называть «точным».

В практических задачах выделить точный (вернее, «почти точный») тренд Tt может оказаться технически очень сложно (см. например, пункт [] в списке литературы).

Поэтому мы будем рассматривать приближенные тренды. Самый простой способ получения приближенного тренда — сглаживание ряда методом скользящего среднего с периодом сглаживания равным максимальному периоду сезонных колебаний. Сглаживание почти полностью устранит сезонные колебания и шум.

В рядах с детализацией по месяцам сглаживание нужно делать по 12-ти точкам (то есть по 12-ти месяцам). Формула скользящего среднего с периодом сглаживания 12 месяцев:

Где Mt — значение скользящего среднего в точке t; Yt значение величины временного ряда в точке t.

Примечание. Очень редко, но все-же бывают динамики продаж, где длина полного период не только не равна году, но и «плавает». В таких случаях колебания, видимо, вызваны не сезонными изменениями, а какими-то другими, более мощными факторами.

Обратите внимание: поскольку мы вычисляем некоторый средний тренд за последние 12 месяцев, то в поведении приближенного тренда по сравнению с точным, происходит как бы запаздывание на 6 месяцев. Не смотря на то, что тренд, полученный методом скользящего среднего — это не точный, а приближенный (да еще и с запаздыванием), он вполне подходит для нашей задачи.

Прологарифмируем уравнение мультипликативной модели, и если шум et не очень большой, то получим аддитивную модель.

Здесь ε1;t также обозначает шум. Тренд мы выделим (скользящим средним за 12 месяцев) именно для такой преобразованной модели. На рисунке 3 — графики и показателя и тренда Mt.


Рис. 3. График прологарифмированной величины показателя и тренда Ми скользящего среднего по 12-ти месяцам. Слева на одном графике и величина и тренд. Справа — тренд в увеличенном масштабе. По оси X — номера периодов.

Примечание. Если темпы динамики небольшие, скажем, 10-15% в год, то и с мультипликативной моделью можно работать как с аддитивной (не логарифмирую).

Прогноз тренда

Тренд мы получили, теперь нужно его спрогнозировать. Прогноз можно бы было получить, например, методом экспоненциального сглаживания (см. []), но поскольку мы хотим прогнозировать максимально простым методом, то остановимся на обычной параметрической аппроксимации. В качестве функций приближения используем следующий набор:

Линейная функция: y = a + b × t.

Логарифмическая функция: y = a + b × ln(t)

Полином второй степени: y = a + b × t + c × t2

Степенная функция: y = a × tb

Экспоненциальная функция: y = a × eb × t

Хорошо бы было дополнить набор и другими функциями, но для этого возможностей Excel недостаточно, нужно использовать специализированные программы: Maple, Matlab, MathCad и т.д.

Качество приближения мы будем оценивать по величине достоверности аппроксимации R2. Чем ближе эта величина к 1 — тем лучше функция приближает тренд. Это верно не всегда, но в Excel нет других критериев оценки качества аппроксимации. Впрочем, критерия R2 нам будет достаточно.

На рисунках 4, 5, 6, 7 и 8и мы сделали аппроксимацию нашего тренда различными функциями и каждая функция аппроксимации продолжена на 12 точек вперед. И еще одна аппроксимация — на рисунке 9, полиномом 5-той степени.

Обратите внимание: если некоторая функция хорошо приближает тренд, то это не всегда означает, что данная функция хорошо тренд прогнозирует. В нашем примере полином 5-той степени делает самое лучшее приближение по сравнению с другими функциями (R2 = 1) и, одновременно, дает самый нереальный прогноз.

По рисункам мы видим, что значение R2 ближе всего к единице у параболы (полином 5-той степени уже не рассматриваем). Следующая по качеству аппроксимация — прямая линия. Хотя формально парабола аппроксимирует лучше всех, но ее поведение, особенно перевал в отдаленных точках, представляется не очень правдоподобным. Тогда можно взять аппроксимацию прямой, но мы найдем компромисс: среднее арифметическое между параболой и прямой.


Рис. 10. Тренд Mt и его прогноз. По оси X — номер периода.

Результат прогноза тренда Mt — на рисунке 10. Итак, мы получили прогноз тренда.

Прогноз показателя

Прогноз тренда у нас есть. Теперь можно сделать прогноз самого показателя. Формула очевидна:

Ln(Yt+1) = 12 × Mt+1 – Ln(Yt) – Ln(Yt-1) – ... – Ln(Yt-10)

Yt+1 = exp(Ln(Yt+1))

До периода t = 19 у нас есть фактические данные. Для t = 20..31 у нас есть спрогнозированный тренд Mt, а значения показателя мы будем считать последовательно, сначала для t = 20, потом для t = 21 и т.д.

Результаты прогноза — на рисунке 11 и в таблице 2.


Рис. 11. Прогноз показателя. По оси X — номер периода.

Сравнение прогноза и реальных данных

На рисунке 12 — графики прогноза и фактических данных.

В таблице 3 приведено сравнение реальных данных и спрогнозированных. Посчитаны ошибки прогноза, абсолютные: Прогноз-Факт; и относительные: 100%(Прогноз-Факт)/Факт.

Обратите внимание, что ошибки прогноза смещены в положительную сторону. Причина этого может быть как в несовершенстве метода, так и в каких-то объективных обстоятельствах, например, в изменении ситуации на рынке в прогнозируемом периоде.

Точность прогноза

Какую точность прогноза можно считать хорошей? Это во многом зависит от исходных данных и применяемой для прогноза модели.

Таблица 2. Прогноз показателя. Период № Периода М Ln(Y) Y 2006-2 20 8,1861 8,6494 5707 2006-3 21 8,2205 8,5408 5119 2006-4 22 8,2531 8,4816 4825 2006-5 23 8,2839 8,3987 4441 2006-6 24 8,3129 8,0533 3144 2006-7 25 8,3401 7,7367 2291 2006-8 26 8,3655 8,3488 4225 2006-9 27 8,3891 8,5675 5258 2006-10 28 8,4109 8,6765 5864 2006-11 29 8,4309 8,6833 5904 2006-12 30 8,4491 8,7487 6303 2007-1 31 8,4655 8,7007 6007


Рис. 12. Фактические данные и спрогнозированные. По оси X — номер периода.

Даже если модель очень хорошо описывает динамику реальных данных, что в общем-то большая редкость, то остаются еще шумы, которые вносят свою ошибку. Например, если уровень шума составляет 10% от значения показателя, то и ошибка прогноза будет не меньше 10%. Плюс, как минимум, еще несколько процентов ошибки добавятся из-за несоответствия модели и динамики реальных данных.

А вообще, лучший способ определить точность — это многократно делать прогнозы для одного и того же процесса и на основании такого опыта определять точность эмпирически.

Таблица 3. Сравнение фактических и спрогнозированных данных. Период № Периода Факт Прогноз Ошибка, абс. Ошибка, % 2006-2 20 5233 5707 474 9 2006-3 21 4625 5119 494 11 2006-4 22 4776 4825 49 1 2006-5 23 4457 4441 -16 0 2006-6 24 3169 3144 -25 -1 2006-7 25 2054 2291 237 12 2006-8 26 3549 4225 676 19 2006-9 27 5087 5258 171 3 2006-10 28 5187 5864 677 13 2006-11 29 5287 5904 617 12 2006-12 30 5700 6303 603 11 2007-1 31 4689 6007 1318 28

Заключение и список литературы

В этой статье мы рассмотрели сильно упрощенный метод прогнозирования. Тем не менее, при отсутствии резких изменений на рынке и внутри компании, даже такой простой метод дает удовлетворительную точность прогноза месяцев на 10 вперед.

Литература

1. Крамер Г. «Математические методы статистики».— М.: «Мир», 1975.

2. Кендэл М. «Временные ряды».— М.: «Финансы и статистика», 1981.

3. Андерсон Т. «Статистический анализ временных рядов».— М.: «Мир», 1976.

4. Бокс Дж., Дженкис Г. «Анализ временных рядов. Прогноз и управление».— М.: «Мир», 1976

5. Губанов В.А., Ковальджи А.К. «Выделение сезонных колебаний на основе вариационных принципов. Экономика и математические методы». 2001. т. 37. № 1. С. 91-102.


Источник: http://www.cfin.ru/finanalysis/math/statistical_method.shtml


Как сделать прогноз по продажам фото


Как сделать прогноз по продажам

Как сделать прогноз по продажам

Как сделать прогноз по продажам

Как сделать прогноз по продажам

Как сделать прогноз по продажам

Как сделать прогноз по продажам

Как сделать прогноз по продажам

Читать топ новости: